Minimum template groups in PG(2,q) and finding minimum template groups size 16&17 in PG(2,9)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template iterations and maximal cofinitary groups

In [2], Jörg Brendle used Hechler’s forcing notion for adding a maximal almost family along an appropriate template forcing construction to show that a (the minimal size of a maximal almost disjoint family) can be of countable cofinality. The main result of the present paper is that ag, the minimal size of maximal cofinitary group, can be of countable cofinality. To prove this we define a natur...

متن کامل

DIALOGIC LEARNING AND INTERACTIVE GROUPS: AN IMS LD TEMPLATE INTEGRATED IN RUNTIME SYSTEMS Dialogic Learning and Interactive Groups: An IMS LD Template Integrated in Runtime Systems

Dialogic learning and interactive groups have proved to be a useful educational methodological approach in lifelong learning with adults. The principles of this approach stress the importance of dialogue and equal participation in every stage of the learning process – including the design of the training activities. This paper adopts these principles as the basis for a configurable template tha...

متن کامل

Finding all minimum-size separating vertex sets in a graph

We present a new algorithm based upon network flows for finding all minimum size separating vertex sets in an undirected graph. The sequential implementation of our algorithm runs in ®(mm(max(Mnk,knmmin(k,'In)),mQx(Mn,k2n3))) = 0 (2 kn3) time, where M is the number of minimum size separating vertex sets The parallel implementai 6 tion runs either in 0 (&logn) deterministic time using ©(M2n2 + k...

متن کامل

Minimum product set sizes in nonabelian groups of order pq

Article history: Received 14 August 2007 Revised 5 February 2009 Available online 26 March 2009 Communicated by David Goss

متن کامل

Minimum Sum and Difference Covers of Abelian Groups

A subset S of a finite Abelian group G is said to be a sum cover of G if every element of G can be expressed as the sum of two not necessarily distinct elements in S, a strict sum cover of G if every element of G can be expressed as the sum of two distinct elements in S, and a difference cover of G if every element of G can be expressed as the difference of two elements in S. For each type of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JOURNAL OF EDUCATION AND SCIENCE

سال: 2009

ISSN: 2664-2530

DOI: 10.33899/edusj.2009.57688